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In the Bragg case, X-ray beams suffer from anomalous absorption due to

extinction effects without photo-absorption and are localized in the surface

when X-ray total re¯ection occurs around an exact Bragg angle from a perfect

crystal. On the other hand, the Borrmann effect due to anomalous transmission

occurs in a thin perfect crystal with photo-absorption under a proper condition.

There is a clear distinction between the extinction effect and the Borrmann

effect. It is found that it is possible to separate the Borrmann effect from the

extinction effect when the real part of the atomic scattering factor is zero. The

calculated rocking curves agree well with the measured ones around the Ge

K-absorption edge of the Ge 844 re¯ection.

1. Introduction

When X-rays are diffracted from a perfect crystal, several

effects peculiar to such a diffraction, so-called dynamical

effects, have been pointed out. Anomalous absorption and

anomalous transmission, i.e. the Borrmann effect, is one of the

typical examples. This effect has been interpreted in terms of

the conventional theory of dynamical X-ray diffraction, in

which Thomson scattering is primarily dealt with and the

absorption is considered only as a perturbation. When reso-

nant scattering becomes dominant, the scattering factor

changes and a different form of dynamical effect can be

expected. A theoretical study on nuclear resonant dynamical

diffraction has been initiated by Kagan et al. (1968). In an

experiment, an interesting effect is reported that the energy

width of the diffracted wave is about ten times larger, i.e. the

lifetime is ten times shorter, at a Bragg angle under resonance

condition (BuÈ rck et al., 1990). The increased energy width is

interpreted as a result of the coherent response of the nuclear

ensemble. Theoretical studies on atomic resonant dynamical

scattering have been done by Kato (1992) and by Fukamachi

& Kawamura (1993) (hereafter referred as FK). According to

the results, the angular width of rocking curves from a semi-

in®nite crystal becomes very small when the resonant scat-

tering becomes dominant. FK have pointed out that the

Borrmann effect occurs regardless of crystal thickness in the

Laue case when only the resonant scattering contributes.

The atomic scattering factor can be expressed as

f � f 0 � f 0 � if 00, where f 0 is the normal atomic scattering

factor for Thomson scattering, and f 0 and f 00 are the real and

imaginary parts of the anomalous scattering factor for reso-

nant scattering, respectively. When the energy of an X-ray

approaches an absorption edge of an atom, f 0 becomes

negative and its absolute value increases. Consequently, the

real part of f may vanish �f 0 � f 0 � 0�, and only the imaginary

part f 00 remains non-zero. A scattering induced by f 00 only has

been observed experimentally (Fukamachi et al., 1993).

Although some interesting phenomena are expected at this

condition, it is dif®cult to carry out an experiment to obtain a

sharp diffracted peak as predicted by theory. Recently, X-ray

topography of the GaAs 200 re¯ection near Ga and As

K-absorption edges has been observed by Negishi et al. (2001).

It is shown that lattice defect images change due to the reso-

nant scattering. These results demonstrate that the topog-

raphy by using atomic resonant scattering has a possible

application to the observation of microstructure in a crystal.

In the Bragg case, when X-ray total re¯ection from a semi-

in®nite perfect crystal occurs around the Bragg angle, the

X-ray wavevector in the crystal becomes complex even

without absorption. The incident X-rays cannot penetrate

deep into the crystal due to the imaginary part of the wave-

vector, i.e. the anomalous absorption results. This is called the

extinction effect. For an absorbing crystal, the linear absorp-

tion coef®cient � becomes larger (anomalous absorption) or

smaller (anomalous transmission) than the mean linear

absorption coef®cient�0 around the Bragg angle (James, 1948,

1963). The anomalous transmission is usually called the

Borrmann effect (Borrmann, 1941).

In this paper, in order to understand how the extinction

effect and the Borrmann effect occur, we investigate complex

dispersion surfaces (Fukamachi et al., 1995) according to a

dynamical theory with atomic or nuclear resonant scattering,

and compare the theoretical results with the measured

ones.



2. Theoretical basis

2.1. X-ray polarizability

The Fourier coef®cient �h of X-ray polarizability is usually

expressed as

�h � �hr � i�hi � j�hrj exp�i�hr� � ij�hij exp�i�hi�: �1�
The real and imaginary parts are given by

�hr � ÿ
4�

V!2

X
j

�f 0
j � f 0j � exp�ih � rj�Tj; �2a�

�hi � ÿ
4�

V!2

X
j

f 00j exp�ih � rj�Tj; �2b�

using atomic units �h- � e � m � 1�. Here V is the unit-cell

volume, h a reciprocal-lattice vector, rj the position vector of

an atom j and Tj a factor for temperature correction.

Let us put

�h�ÿh � ��2
h�u� iv�; �3�

with

��h � �j�hrj2 � j�hij2�1=2; �4�
u � �j�hrj2 ÿ j�hij2�= ��2

h; �5�
v � �1ÿ u2�1=2 cos � �6�

and

� � �hi ÿ �hr: �7�
If atomic resonant scattering is ignored and only Thomson

scattering is considered, we obtain �0i � �hi � 0 and u � 1. In

fact, this condition cannot be satis®ed in an actual mono-

atomic crystal. However, u � 1 is satis®ed near an absorption

edge in a polyatomic crystal even for �0i 6� 0, which has been

con®rmed by Fukamachi et al. (1996). The condition u � ÿ1 is

satis®ed near an absorption edge even in a monoatomic crystal

when f 0 � f 0 � 0.

According to the above notation, the parameters u and v

vary from ÿ1 to 1 continuously, therefore u� iv form the unit

circle in a complex plane. When the condition of j�hj � j�ÿhj
is satis®ed, � is either 0 or �, so u� iv is always located in the

circumference of the unit circle. When the condition of

j�hj 6� j�ÿhj is satis®ed, u� iv is located at a point inside the

unit circle.

The conventional theory is applicable only to the condition

j�hij=j�hrj � 0:1 (Zachariasen, 1945), namely 1 � u � 0:98.

Under such a condition, the dispersion surface calculated by

the two-wave approximation is a hyperbola. However, the

shape of the dispersion surface changes greatly for other

values of u and v, which is investigated below.

2.2. Complex dispersion surface

In order to understand the physical meaning of the complex

dispersion surface, we begin with investigating the basic

equation of diffraction in the two-wave approximation. The

dispersion surface is given by

�0�h � �P2�2
0r=4��h�ÿh; �8�

where P is the polarization factor and P � 1 for � polarization

and P � j cos 2�Bj for � polarization (here �B is the Bragg

angle in vacuum). �0 and �h can be put in the form

�0 � �k2
0�1=2 ÿ �0; �h � �k2

h�1=2 ÿ �0; �9�
where k0 and kh (jk0j � jkhj � 2�=�, � is the wavelength) are

the wavevectors for the incident and diffracted waves in the

crystal, respectively. �0 is the average wave number in the

crystal and can be written as

�0 � �0r � i�0i �10�
with

�0r � K�1� �0r=2�; �0i � K�0i=2; �11�
where K is the wave number in vacuum. The mean absorption

coef®cient �0 can be expressed as

�0 � ÿ�0i=2 � K�0i: �12�
According to

k0 � k0r � ik0i; kh � k0r � h� ik0i � khr � ik0i �13�
and considering the condition jk0rj � jk0ij for X-rays, we can

put

k2
0 � k2

0r � 2ik0r � k0i: �14�
If we put s0 � k0r=jk0rj and sh � khr=jkhrj,
�k2

0�1=2 � jk0rj � is0 � k0i; �k2
h�1=2 � jkhrj � ish � khi: �15�

Then from (9), (10) and (15), we obtain

�0 � jk0rj ÿ �0r � i�s0 � k0i ÿ �0i� � �0r � i�0i; �16a�
�h � jkhrj ÿ �0r � i�sh � khi ÿ �0i� � �hr � i�hi: �16b�

Because �0 is complex, it is necessary to draw a dispersion

surface in a complex plane. By replacing �0 by �0r, we obtain

�0 � �k2
0�1=2 ÿ �0r ÿ i�0i � �00 ÿ i�0i; �17a�

�h � �k2
h�1=2 ÿ �0r ÿ i�0i � �0h ÿ i�0i: �17b�

Equation (8) can be rewritten as

��00 ÿ i�0i���0h ÿ i�0i� � �P2�2
0r=4� ��2

h�u� iv� �18�
with the relations

�00 � �00r � i�00i;

�0h � �0hr � i�0hi;

�00r � �0r;

�0hr � �hr;

�00i � s0 � k0i; �19a�
�0hi � sh � k0i: �19b�

We use the Cartesian coordinate to draw the dispersion

surface and take the X axis parallel to the crystal surface.

Using

Y0 � Y0r � iY0i; �20�
we obtain

�00r � X0 sin �1 � Y0r cos �1;

�0hr � X0 sin �2 � Y0r cos �2;

�00i � Y0i cos �1; �21a�
�0hi � Y0i cos �2; �21b�

where �1 and �2 are the same as in Fukamachi et al. (1995).

Using the excitation error de®ned as (FK),
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W � ÿ X0 sin 2�0B
jcos �1 cos �2j1=2�0rP ��h

: �22�

In the Bragg case (cos �2 < 0), we get

Y0r �
ÿ�0rP ��h

2jcos �1 cos �2j1=2

sin 2�

sin 2�0B
W � RefAÿ Bg1=2

� �
; �23a�

Y0i �
ÿ�0rP ��h

2jcos �1 cos �2j1=2
g

cos �0B sin �

jcos �1 cos �2j1=2
� ImfAÿ Bg1=2

� �
:

�23b�
Here �0B is a Bragg angle in the crystal,

A � �W � ig0�2; B � u� iv �24�
and

g � �0i

P ��h

; g0 � g
sin �0B cos �

jcos �1 cos �2j1=2
; �25�

where � is the same as in Fukamachi et al. (1995).

According to the diffraction condition, the dispersion point

can be given as the crossing point on the dispersion surface

with the normal line �, so �0 and �h can be determined. The

electric ®eld D0 related to the incident wave and Dh related to

the diffracted wave in the crystal can be given as follows:

D0 �
�0r

2�0

P�ÿhDh �
2�h

�0r

1

P�h

Dh: �26�

Now we discuss the physical content of the obtained

complex dispersion surface. Fig. 1 shows the dispersion surface

in the symmetric Bragg case for u � 1 which includes the

resonant scattering. The thick solid curves (a) represent the

real part, and the thick dashed curves (b) represent the

imaginary part. The physical content of the real part is well

explained in conventional dynamical theory and here we focus

on the physical meaning of the imaginary part.

The dispersion points are marked A1 and A2 for the real

part, and B1 and B2 for the imaginary part, respectively. The

line Q0Q00 is perpendicular to s0 and is the section of the

surface s0 � k0i expressed by (15). The line P0P00 is the section

of the surface sh � k0i and is perpendicular to sh. These sections,

which are parallel to the corresponding asymptotes QQ0 and

PP0, represent the same amount of absorption in the crystal.

The vector B1C1 corresponds to k
�1�
0i and the segment B1C1 is

equal to �0�1�0i . Furthermore, Q1Q01 is an interface formed by

moving s0 � k0i along the O direction by �0i, the intersection

point between Q1Q01 and its perpendicular line through B1 is

D1, and then B1D1 � �
0�1�
0i ÿ �0i � ��1�0i is obtained.

The intensity of the j branch wave at depth z is proportional

to

jexp�ÿik
�j�
0zz�j2 � exp�2Y

�j�
0i z�; �27�

where the relation k
�j�
0z � �0r= sin �0B � Y

�j�
0r � iY

�j�
0i is used. The

linear absorption coef®cient ��j� can be written as

��j� � ÿ2Y
�j�
0i sin �0B � ÿ2k

�j�
0i : �28�

In the limit of jX0j ! 1, Y0i of the lower branch becomes �Y0i.

From Fig. 2, �Y0i is given by

�Y0i � Y0i�jX0j ! 1� � �0i= sin �0B �29�
and

�0 � ÿ2 �Y0i sin �0B � ÿ2�0i: �30�
We de®ne

��j�a � ��j� ÿ �0 � ÿ2��j�0i ; �31�
which is called the abnormal absorption coef®cient hereafter.

2.3. Extinction effect and Borrmann effect

For investigating the characteristics of the extinction effect

and the Borrmann effect, complex dispersion surfaces are

shown for (a) �u; v� � �1; 0�, (b) �u; v� � �ÿ1; 0�, (c)

�u; v� � �0; 1� and (d) �u; v� � �0;ÿ1�, in the symmetric Bragg

case in Fig. 2.

According to the imaginary part of the dispersion surface

for u � 1 shown in Fig. 1(b) and Fig. 2(a), the lower branch

wave suffers anomalous absorption because �0i < 0 and �a > 0,

then �>�0 is satis®ed, and the upper branch wave suffers

anomalous transmission because �0i > 0 and �a < 0. The

phenomenon of the anomalous absorption and the anomalous

transmission caused by �hr is called the extinction effect in this

paper as it occurs even without photo-absorption. Figs. 3(a)

Figure 1
The complex dispersion surface when u � 1 ��0i 6� 0� in the Bragg case.
The thick solid curves represent the real part (a), and the thick dashed
curves the imaginary part (b).



and (b) show jD�j�0 =E0j and jD�j�0 exp�ÿik
�j�
0zz�=E0j under the

conditions (a) u � 1, �0i � 0 and W � 0, and (b) u � ÿ1

and W � 0. In Fig. 3(a), though jD�1�0 =E0j> jD�2�0 =E0j,
jD�j�0 exp�ÿik

�j�
0zz�=E0j has the same value for different bran-

ches and is localized in the surface. Thus, the intensity of a

transmitted rocking curve calculated by using the formula

derived by Negishi et al. (1998) becomes weak around a Bragg

condition due to the extinction effect as shown in Fig. 4(a).

When such an extinction effect is generated, jk�j�0i j> j�0ij holds

as shown in the imaginary dispersion surface.

The imaginary dispersion surface for u � ÿ1 in Fig. 2(b)

shows that the lower and upper branches with �0i > 0 and

�a < 0 mean the anomalous transmission. When k
�j�
0iz � 0 at

W � 0, jD�j�0 exp�ÿik
�j�
0zz�=E0j has the same value as jD�j�0 =E0j

and jD�1�0 j is larger than jD�2�0 j as shown Fig. 3(b). Then the

peak of the transmitted rocking curve in Fig. 4(b) is caused by

the anomalous transmission mainly due to branch 1. The

phenomenon of anomalous transmission caused by �hi is

called the Borrmann effect in this paper. When the effect is

generated, jk�j�0i j< j�0ij holds as shown in the imaginary

dispersion surface.

The imaginary dispersion surfaces for �u; v� � �0; 1� and

�0;ÿ1� are shown in Figs. 2(c) and (d), respectively. It can be

understood in Fig. 2(c) that the anomalous transmission is

generated due to the Borrmann effect for X > 0 and that the

anomalous absorption is generated due to the extinction effect

for X < 0. As the dispersion surfaces for v � ÿ1 are obtained

by reversing those for v � 1 around X � 0, similar effects are

obtained for v � ÿ1. Fig. 4(c) shows the transmitted rocking

curves for �u; v� � �0; 1� and �0;ÿ1�. When �u; v� � �0; 1�, the

peak located at the negative side of W results from the

anomalous transmission due to the Borrmann effect and the

valley located in the positive side of W results from the

anomalous absorption due to the extinction effect. The

reverse trend of the peak and valley positions with respect to

W � 0 can be observed between v � ÿ1 and � � 1.

2.4. Simulation

Because the abnormal absorption coef®cient �a < 0 always

holds when u � ÿ1 in the Bragg case, anomalous transmission

is expected due to the Borrmann effect regardless of the

crystal thickness. Here, we analyze the condition u � ÿ1

theoretically in an actual crystal, i.e. near the Ge K-absorption

edge of the Ge 844 re¯ection.

In Fig. 5, the locus of f is given as ! changes where the

abscissa represents f 0 � f 0 and the ordinate represents f 00. !K

is the energy of the Ge K-absorption edge (11103 eV). We

note that f 0 � f 0 � 0 is satis®ed at ! � !K � 1:3 eV and only

f 00 remains non-zero, namely, u � ÿ1 holds. In the energy

region of !K ÿ 1:3<!<!K � 1:3 eV, v< 0 holds due to

f 0 � f 0< 0 (outside the energy region, �> 0). In Fig. 6, the

rocking curves of Ge 844 with crystal thickness 80 mm are

shown, at the energy points (a) ! � !K ÿ 4:3 eV, (b)

! � !K ÿ 1:3 eV and (c) ! � !K ÿ 0:5 eV, respectively. The

corresponding values of �u; v� are �0:40; 0:91� for Fig. 6(a),

�ÿ1; 0� for 6(b) and �ÿ0:83;ÿ0:56� for 6(c). The shapes of the

diffracted rocking curves (thin solid curves) for Figs. 6(a)±(c)
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Figure 2
Complex dispersion surfaces in the Bragg case for (a) �u; v� � �1; 0�, (b)
�u; v� � �ÿ1; 0�, (c) �u; v� � �0; 1� and (d) �u; v� � �0;ÿ1�. The thick
solid curves represent the real part, and the dashed curves the imaginary
part.

Figure 3
The electric ®elds jD�j�0 =E0j and jD�j�0 exp�ÿik

�j�
0zz�=E0j in the crystal when

W � 0. E0 is the electric ®eld of the incident X-ray. (a) �u; v� � �1; 0� and
�0i � 0, and (b) �u; v� � �ÿ1; 0�.
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are almost the same with a peak located in the center. In fact,

except for Fig. 6(b), the peak deviates slightly from the center

in 6(a) and 6(c), and locates in the negative angle side in 6(a),

and in the positive angle side in 6(c). However, the corre-

sponding transmitted rocking curves (thick solid curves) in

Figs. 6(a)±(c) change remarkably. In Fig. 6(b), the anomalous

transmission peak in the center due to the Borrmann effect

appears in the background after suffering from the average

absorption. In Fig. 6(a), the peak can be seen in the negative

angle side due to the anomalous transmission of the Borrmann

effect, and the valley can be seen in the positive angle side due

to the extinction effect. But in Fig. 6(c), the reversed variation

with respect to 6(a) is seen.

3. Experiment

According to the above theoretical analysis, the extinction

effect and the Borrmann effect coexist in the region of

1> u>ÿ1, while only the extinction effect exists for u � 1

and only the Borrmann effect for u � ÿ1. We have obtained

the experimental result for the condition that only the

extinction effect exists for u � 1 (Negishi et al., 1998). In the

present work, we performed an experiment to examine the

theoretical conclusion that only the Borrmann effect exists for

u � ÿ1.

The schematic diagram of the measuring system is shown in

Fig. 7. The experiment was carried out on beamline 15C at

KEK-PF. The X-ray from SR was monochromated by using an

Si 111 double-crystal monochromator and an Si 664 mono-

chromator. The diffracted and transmitted rocking curves of

Figure 4
Rocking curves in the symmetric Bragg case. (a) �u; v� � �1; 0�, (b)
�u; v� � �ÿ1; 0� and (c) �u; v� � �0; 1� and �u; v� � �0;ÿ1�. Ph=P0

represents the normalized diffraction intensity, and Pd=P0 the normalized
transmitted one. The parameter sH is proportional to the crystal
thickness.

Figure 5
The locus of f for Ge 844. Values of f 0 and f 00obtained by the Parratt &
Hempstead (1954) method using oscillator strength from Cromer's table
(Cromer, 1965).

Figure 6
Calculated rocking curves of Ge 844 near the Ge K-absorption edge at (a)
4.3 eV, (b) 1.3 eV and (c) 0.5 eV below the edge. The thick solid curves
represent the transmitted rocking curves and the thin solid curves the
diffracted one. The dashed lines represent the transmitted intensity
assuming the mean absorption. The sample thickness is 80 mm and the
temperature factor B = 0.58 AÊ 2.



Ge 844 were measured from a crystal with thickness 82 mm

with an etch-pit density (EPD) value less than 500 cmÿ1. Fig. 8

shows the measured rocking curves. The angle in each ®gure is

normalized so that a peak of the diffracted rocking curve is in

the center. The energy of the X-rays was calibrated by

measurement of XANES with a thin Ge plate with a precision

�0:5 eV. According to the previous experimental results of

Fukamachi et al. (1993) for Ge 844, u � ÿ1 is satis®ed at

!K ÿ 2:8� 0:2 eV but not at !K ÿ 1:3 eV as predicted by the

theory. With this in mind, the measured rocking curves at

energy points (a) !K ÿ 4 eV, (b) !K ÿ 3 eV and (c) !K ÿ 2 eV

are shown in Fig. 8.

4. Results and discussion

In the Bragg case, James (1948, 1963) investigated the

anomalous absorption due to the extinction effect in the

region around j�hij=j�hrj � 0:1 using the conventional dy-

namical theory with absorption. By use of Cu K� X-rays, he

obtained the result that � is 25 times larger than �0 for NaCl

200 at W � 0. However, he did not further investigate the

origins that lead to �<�0.

In the present studies, the origins of the anomalous

absorption and the anomalous transmission corresponding to

the extinction effect and the anomalous transmission corre-

sponding to the Borromann effect have been shown by using

the complex dispersion surface. It is concluded that: (i) only

the extinction effect, which is the dynamical effect resulting

from �hr, is generated for u � 1; (ii) only the Borrmann effect,

which is the dynamical effect resulting from �hi, is generated

for u � ÿ1; and (iii) the extinction effect and the Borrmann

effect coexist for 1> u>ÿ1 except when �u; v� � �0; 0�. [For

the condition �u; v� � �0; 0�, we do not expect the dynamical

effect because the dispersion surface corresponds to the

asymptote.] These effects are also re¯ected in the transmitted

rocking curves as: (i) a valley for u � 1; (ii) a peak for u � ÿ1;

and (iii) a peak in the negative W side and a valley in the

positive W side for 1> u>ÿ1 and v> 0, or a peak in the

positive side and a valley in the negative side for 1> u>ÿ1

and �< 0. Here we emphasize that the Borrmann effect

vanishes completely and only the extinction effect appears for

u � 1 which may include the photo-absorption, and that the

extinction effect vanishes completely and only the Borrmann

effect appears for u � ÿ1 in the Bragg case.

For u � 1, the valley due to anomalous absorption related

only to the extinction effect has been observed by Negishi et

al. (1998), which can be seen in the transmitted rocking curves

of (a)±(c) in Fig. 5 in their paper. They tuned the X-ray energy

to the points (a) 9 eV, (b) 6 eV and (c) 3 eV below the Ga

K-absorption edge (10368 eV) for the GaAs 600 re¯ection.

The measured transmitted rocking curve (b) shows a valley

caused only by anomalous absorption due to the extinction

effect. For u � ÿ1, the systematic change has been seen

clearly in the transmitted rocking curves as shown in Figs.

8(a)±(c). The peak of the transmitted rocking curve of Fig.

8(b) appears in the center. According to the theoretical

analysis, this experimental result suggests that u � ÿ1 is

satis®ed and only the anomalous transmission of the Borr-

mann effect occurs. Furthermore, the peak located in the low-

angle side of Fig. 8(a) and that in the high-angle side of 8(c)

results from the anomalous transmission of the Borrmann

effect, which can be understood by comparing them with the

theoretical results in Fig. 6. On the other hand, the valley

located in the high-angle side of Fig. 8(a) and that in the low-

angle side of 8(c) is generated by the anomalous absorption of
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Figure 7
Schematic diagram of the measuring system.

Figure 8
Observed rocking curves of Ge 844 near the Ge K-absorption edge. The
closed circles represent the transmitted rocking curves and the open
circles the diffracted ones. (a) 4 eV, (b) 3 eV and (c) 2 eV below the edge.
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the extinction effect. Therefore, we come to a conclusion that

asymmetric transmitted rocking curves appear due to the

coexistence of the extinction effect and the Borrmann effect.

The extinction effect is dominant in the high-angle side of the

curve in Fig 8(a) and the low-angle side of curve 8(c), and the

Borrmann effect is dominant in the low-angle side of curve

8(a) and the high-angle side of curve 8(c).

Under the extinction effect condition, X-rays are quite

localized at a crystal surface and give rise to information on

the surface. On the other hand, under the Borrmann effect

condition without the extinction effect, X-rays propagate

much deeper into the crystal than estimated by the mean

absorption. We can vary the penetration depth of X-rays

continuously by changing the energy under resonant condi-

tion. As an application, this may be used to obtain defect

contrasts of X-ray topography at various depths by just

changing X-ray energy, which will be our future work.

The complex dispersion surface obtained in the present

paper can be used for any values of the scattering factors, i.e.

u� iv �ÿ1 � u � 1� although that of the conventional theory

is only applicable when the imaginary part of the scattering

factors is small (u � 1). Thus the complex dispersion surface is

expected to be very useful in the analysis of the experimental

results of the atomic or nuclear resonant scattering. In addi-

tion, the formula (8) can be rewritten as follows:

��0r�hr ÿ �0i�hi� � i��0r�hi � �hr�0i� � �P2�2
0r=4� ��2

h�u� iv�:
�32�

In the main discussion about dynamical effects in the

conventional dynamical theory (Batterman & Cole, 1964), the

approximation of j�0r�hrj � j�0i�hij was adopted. It is clear that

such an approximation is inadequate as shown in Figs. 1 and 2,

where j�0r�hrj � j�0i�hij.
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